Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Int J Hyperthermia ; 41(1): 2321980, 2024.
Article En | MEDLINE | ID: mdl-38616245

BACKGROUND: A method for periprocedural contrast agent-free visualization of uterine fibroid perfusion could potentially shorten magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) treatment times and improve outcomes. Our goal was to test feasibility of perfusion fraction mapping by intravoxel incoherent motion (IVIM) modeling using diffusion-weighted MRI as method for visual evaluation of MR-HIFU treatment progression. METHODS: Conventional and T2-corrected IVIM-derived perfusion fraction maps were retrospectively calculated by applying two fitting methods to diffusion-weighted MRI data (b = 0, 50, 100, 200, 400, 600 and 800 s/mm2 at 1.5 T) from forty-four premenopausal women who underwent MR-HIFU ablation treatment of uterine fibroids. Contrast in perfusion fraction maps between areas with low perfusion fraction and surrounding tissue in the target uterine fibroid immediately following MR-HIFU treatment was evaluated. Additionally, the Dice similarity coefficient (DSC) was calculated between delineated areas with low IVIM-derived perfusion fraction and hypoperfusion based on CE-T1w. RESULTS: Average perfusion fraction ranged between 0.068 and 0.083 in areas with low perfusion fraction based on visual assessment, and between 0.256 and 0.335 in surrounding tissues (all p < 0.001). DSCs ranged from 0.714 to 0.734 between areas with low perfusion fraction and the CE-T1w derived non-perfused areas, with excellent intraobserver reliability of the delineated areas (ICC 0.97). CONCLUSION: The MR-HIFU treatment effect in uterine fibroids can be visualized using IVIM perfusion fraction mapping, in moderate concordance with contrast enhanced MRI. IVIM perfusion fraction mapping has therefore the potential to serve as a contrast agent-free imaging method to visualize the MR-HIFU treatment progression in uterine fibroids.


Leiomyoma , Magnetic Resonance Imaging , Female , Humans , Reproducibility of Results , Retrospective Studies , Perfusion , Leiomyoma/diagnostic imaging , Leiomyoma/surgery
2.
Eur Radiol Exp ; 8(1): 31, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38480603

BACKGROUND: To compare image quality, metal artifacts, and diagnostic confidence of conventional computed tomography (CT) images of unilateral total hip arthroplasty patients (THA) with deep learning-based metal artifact reduction (DL-MAR) to conventional CT and 130-keV monoenergetic images with and without orthopedic metal artifact reduction (O-MAR). METHODS: Conventional CT and 130-keV monoenergetic images with and without O-MAR and DL-MAR images of 28 unilateral THA patients were reconstructed. Image quality, metal artifacts, and diagnostic confidence in bone, pelvic organs, and soft tissue adjacent to the prosthesis were jointly scored by two experienced musculoskeletal radiologists. Contrast-to-noise ratios (CNR) between bladder and fat and muscle and fat were measured. Wilcoxon signed-rank tests with Holm-Bonferroni correction were used. RESULTS: Significantly higher image quality, higher diagnostic confidence, and less severe metal artifacts were observed on DL-MAR and images with O-MAR compared to images without O-MAR (p < 0.001 for all comparisons). Higher image quality, higher diagnostic confidence for bone and soft tissue adjacent to the prosthesis, and less severe metal artifacts were observed on DL-MAR when compared to conventional images and 130-keV monoenergetic images with O-MAR (p ≤ 0.014). CNRs were higher for DL-MAR and images with O-MAR compared to images without O-MAR (p < 0.001). Higher CNRs were observed on DL-MAR images compared to conventional images and 130-keV monoenergetic images with O-MAR (p ≤ 0.010). CONCLUSIONS: DL-MAR showed higher image quality, diagnostic confidence, and superior metal artifact reduction compared to conventional CT images and 130-keV monoenergetic images with and without O-MAR in unilateral THA patients. RELEVANCE STATEMENT: DL-MAR resulted into improved image quality, stronger reduction of metal artifacts, and improved diagnostic confidence compared to conventional and virtual monoenergetic images with and without metal artifact reduction, bringing DL-based metal artifact reduction closer to clinical application. KEY POINTS: • Metal artifacts introduced by total hip arthroplasty hamper radiologic assessment on CT. • A deep-learning algorithm (DL-MAR) was compared to dual-layer CT images with O-MAR. • DL-MAR showed best image quality and diagnostic confidence. • Highest contrast-to-noise ratios were observed on the DL-MAR images.


Arthroplasty, Replacement, Hip , Deep Learning , Humans , Tomography, X-Ray Computed/methods , Artifacts , Algorithms
3.
Eur J Radiol ; 173: 111361, 2024 Apr.
Article En | MEDLINE | ID: mdl-38401407

PURPOSE: To evaluate the diagnostic performance and generalizability of the winning DL algorithm of the RSNA 2020 PE detection challenge to a local population using CTPA data from two hospitals. MATERIALS AND METHODS: Consecutive CTPA images from patients referred for suspected PE were retrospectively analysed. The winning RSNA 2020 DL algorithm was retrained on the RSNA-STR Pulmonary Embolism CT (RSPECT) dataset. The algorithm was tested in hospital A on multidetector CT (MDCT) images of 238 patients and in hospital B on spectral detector CT (SDCT) and virtual monochromatic images (VMI) of 114 patients. The output of the DL algorithm was compared with a reference standard, which included a consensus reading by at least two experienced cardiothoracic radiologists for both hospitals. Areas under the receiver operating characteristic curve (AUCs) were calculated. Sensitivity and specificity were determined using the maximum Youden index. RESULTS: According to the reference standard, PE was present in 73 patients (30.7%) in hospital A and 33 patients (29.0%) in hospital B. For the DL algorithm the AUC was 0.96 (95% CI 0.92-0.98) in hospital A, 0.89 (95% CI 0.81-0.94) for conventional reconstruction in hospital B and 0.87 (95% CI 0.80-0.93) for VMI. CONCLUSION: The RSNA 2020 pulmonary embolism detection on CTPA challenge winning DL algorithm, retrained on the RSPECT dataset, showed high diagnostic accuracy on MDCT images. A somewhat lower performance was observed on SDCT images, which suggest additional training on novel CT technology may improve generalizability of this DL algorithm.


Deep Learning , Pulmonary Embolism , Humans , Angiography/methods , Retrospective Studies , Pulmonary Embolism/diagnostic imaging , Sensitivity and Specificity
5.
Eur J Radiol ; 163: 110844, 2023 Jun.
Article En | MEDLINE | ID: mdl-37119708

PURPOSE: To develop a deep learning-based metal artifact reduction technique (dl-MAR) and quantitatively compare metal artifacts on dl-MAR-corrected CT-images, orthopedic metal artifact reduction (O-MAR)-corrected CT-images and uncorrected CT-images after sacroiliac (SI) joint fusion. METHODS: dl-MAR was trained on CT-images with simulated metal artifacts. Pre-surgery CT-images and uncorrected, O-MAR-corrected and dl-MAR-corrected post-surgery CT-images of twenty-five patients undergoing SI joint fusion were retrospectively obtained. Image registration was applied to align pre-surgery with post-surgery CT-images within each patient, allowing placement of regions of interest (ROIs) on the same anatomical locations. Six ROIs were placed on the metal implant and the contralateral side in bone lateral of the SI joint, the gluteus medius muscle and the iliacus muscle. Metal artifacts were quantified as the difference in Hounsfield units (HU) between pre- and post-surgery CT-values within the ROIs on the uncorrected, O-MAR-corrected and dl-MAR-corrected images. Noise was quantified as standard deviation in HU within the ROIs. Metal artifacts and noise in the post-surgery CT-images were compared using linear multilevel regression models. RESULTS: Metal artifacts were significantly reduced by O-MAR and dl-MAR in bone (p < 0.001), contralateral bone (O-MAR: p = 0.009; dl-MAR: p < 0.001), gluteus medius (p < 0.001), contralateral gluteus medius (p < 0.001), iliacus (p < 0.001) and contralateral iliacus (O-MAR: p = 0.024; dl-MAR: p < 0.001) compared to uncorrected images. Images corrected with dl-MAR resulted in stronger artifact reduction than images corrected with O-MAR in contralateral bone (p < 0.001), gluteus medius (p = 0.006), contralateral gluteus medius (p < 0.001), iliacus (p = 0.017), and contralateral iliacus (p < 0.001). Noise was reduced by O-MAR in bone (p = 0.009) and gluteus medius (p < 0.001) while noise was reduced by dl-MAR in all ROIs (p < 0.001) in comparison to uncorrected images. CONCLUSION: dl-MAR showed superior metal artifact reduction compared to O-MAR in CT-images with SI joint fusion implants.


Deep Learning , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Artifacts , Sacroiliac Joint/diagnostic imaging , Sacroiliac Joint/surgery , Retrospective Studies , Algorithms
6.
Eur Radiol ; 33(6): 4178-4188, 2023 Jun.
Article En | MEDLINE | ID: mdl-36472702

OBJECTIVES: No method is available to determine the non-perfused volume (NPV) repeatedly during magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablations of uterine fibroids, as repeated acquisition of contrast-enhanced T1-weighted (CE-T1w) scans is inhibited by safety concerns. The objective of this study was to develop and test a deep learning-based method for translation of diffusion-weighted imaging (DWI) into synthetic CE-T1w scans, for monitoring MR-HIFU treatment progression. METHODS: The algorithm was retrospectively trained and validated on data from 33 and 20 patients respectively who underwent an MR-HIFU treatment of uterine fibroids between June 2017 and January 2019. Postablation synthetic CE-T1w images were generated by a deep learning network trained on paired DWI and reference CE-T1w scans acquired during the treatment procedure. Quantitative analysis included calculation of the Dice coefficient of NPVs delineated on synthetic and reference CE-T1w scans. Four MR-HIFU radiologists assessed the outcome of MR-HIFU treatments and NPV ratio based on the synthetic and reference CE-T1w scans. RESULTS: Dice coefficient of NPVs was 71% (± 22%). The mean difference in NPV ratio was 1.4% (± 22%) and not statistically significant (p = 0.79). Absolute agreement of the radiologists on technical treatment success on synthetic and reference CE-T1w scans was 83%. NPV ratio estimations on synthetic and reference CE-T1w scans were not significantly different (p = 0.27). CONCLUSIONS: Deep learning-based synthetic CE-T1w scans derived from intraprocedural DWI allow gadolinium-free visualization of the predicted NPV, and can potentially be used for repeated gadolinium-free monitoring of treatment progression during MR-HIFU therapy for uterine fibroids. KEY POINTS: • Synthetic CE-T1w scans can be derived from diffusion-weighted imaging using deep learning. • Synthetic CE-T1w scans may be used for visualization of the NPV without using a contrast agent directly after MR-HIFU ablations of uterine fibroids.


Deep Learning , High-Intensity Focused Ultrasound Ablation , Leiomyoma , Uterine Neoplasms , Female , Humans , Uterine Neoplasms/diagnostic imaging , Uterine Neoplasms/surgery , Retrospective Studies , Leiomyoma/diagnostic imaging , Leiomyoma/surgery , Magnetic Resonance Imaging/methods , High-Intensity Focused Ultrasound Ablation/methods , Treatment Outcome
7.
Trials ; 23(1): 1061, 2022 Dec 29.
Article En | MEDLINE | ID: mdl-36582001

BACKGROUND: Cancer-induced bone pain (CIBP), caused by bone metastases, is a common complication of cancer and strongly impairs quality of life (QoL). External beam radiotherapy (EBRT) is the current standard of care for treatment of CIBP. However, approximately 45% of patients have no adequate pain response after EBRT. Magnetic resonance image-guided high-intensity focused ultrasound (MR-HIFU) may improve pain palliation in this patient population. The main objective of this trial was to compare MR-HIFU, EBRT, and MR-HIFU + EBRT for the palliative treatment of bone metastases. METHODS/DESIGN: The FURTHER trial is an international multicenter, three-armed randomized controlled trial. A total of 216 patients with painful bone metastases will be randomized in a 1:1:1 ratio to receive EBRT only, MR-HIFU only, or combined treatment with EBRT followed by MR-HIFU. During a follow-up period of 6 months, patients will be contacted at eight time points to retrieve information about their level of pain, QoL, and the occurrence of (serious) adverse events. The primary outcome of the trial is pain response at 14 days after start of treatment. Secondary outcomes include pain response at 14 days after trial enrolment, pain scores (daily until the 21st day and at 4, 6, 12 and 24 weeks), toxicity, adverse events, QoL, and survival. Cost-effectiveness and cost-utility analysis will be conducted. DISCUSSION: The FURTHER trial aims to evaluate the effectiveness and cost-effectiveness of MR-HIFU-alone or in combination with EBRT-compared to EBRT to relieve CIBP. The trial will be performed in six hospitals in four European countries, all of which are partners in the FURTHER consortium. TRIAL REGISTRATION: The FURTHER trial is registered under the Netherlands Trials Register number NL71303.041.19 and ClinicalTrials.gov registration number NCT04307914. Date of trial registration is 13-01-2020.


Bone Neoplasms , Cancer Pain , Humans , Palliative Care/methods , Quality of Life , Pain Management/methods , Pain , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/radiotherapy , Cancer Pain/radiotherapy , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
8.
Eur J Radiol ; 154: 110414, 2022 Sep.
Article En | MEDLINE | ID: mdl-35780607

PURPOSE: To investigate whether the image quality of a specific deep learning-based synthetic CT (sCT) of the cervical spine is noninferior to conventional CT. METHOD: Paired MRI and CT data were collected from 25 consecutive participants (≥ 50 years) with cervical radiculopathy. The MRI exam included a T1-weighted multiple gradient echo sequence for sCT reconstruction. For qualitative image assessment, four structures at two vertebral levels were evaluated on sCT and compared with CT by three assessors using a four-point scale (range 1-4). The noninferiority margin was set at 0.5 point on this scale. Additionally, acceptable image quality was defined as a score of 3-4 in ≥ 80% of the scans. Quantitative assessment included geometrical analysis and voxelwise comparisons. RESULTS: Qualitative image assessment showed that sCT was noninferior to CT for overall bone image quality, artifacts, imaging of intervertebral joints and neural foramina at levels C3-C4 and C6-C7, and cortical delineation at C6-C7. Noninferiority was weak to absent for cortical delineation at level C3-C4 and trabecular bone at both levels. Acceptable image quality was achieved for all structures in sCT and CT, except for trabecular bone in sCT and level C6-C7 in CT. Geometrical analysis of the sCT showed good to excellent agreement with CT. Voxelwise comparisons showed a mean absolute error of 80.05 (±6.12) HU, dice similarity coefficient (cortical bone) of 0.84 (±0.04) and structural similarity index of 0.86 (±0.02). CONCLUSIONS: This deep learning-based sCT was noninferior to conventional CT for the general visualization of bony structures of the cervical spine, artifacts, and most detailed structure assessments.


Cervical Vertebrae , Deep Learning , Tomography, X-Ray Computed , Artifacts , Artificial Intelligence , Cervical Vertebrae/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods
9.
Eur Radiol ; 32(7): 4537-4546, 2022 Jul.
Article En | MEDLINE | ID: mdl-35190891

OBJECTIVES: Visualization of the bone distribution is an important prerequisite for MRI-guided high-intensity focused ultrasound (MRI-HIFU) treatment planning of bone metastases. In this context, we evaluated MRI-based synthetic CT (sCT) imaging for the visualization of cortical bone. METHODS: MR and CT images of nine patients with pelvic and femoral metastases were retrospectively analyzed in this study. The metastatic lesions were osteolytic, osteoblastic or mixed. sCT were generated from pre-treatment or treatment MR images using a UNet-like neural network. sCT was qualitatively and quantitatively compared to CT in the bone (pelvis or femur) containing the metastasis and in a region of interest placed on the metastasis itself, through mean absolute difference (MAD), mean difference (MD), Dice similarity coefficient (DSC), and root mean square surface distance (RMSD). RESULTS: The dataset consisted of 3 osteolytic, 4 osteoblastic and 2 mixed metastases. For most patients, the general morphology of the bone was well represented in the sCT images and osteolytic, osteoblastic and mixed lesions could be discriminated. Despite an average timespan between MR and CT acquisitions of 61 days, in bone, the average (± standard deviation) MAD was 116 ± 26 HU, MD - 14 ± 66 HU, DSC 0.85 ± 0.05, and RMSD 2.05 ± 0.48 mm and, in the lesion, MAD was 132 ± 62 HU, MD - 31 ± 106 HU, DSC 0.75 ± 0.2, and RMSD 2.73 ± 2.28 mm. CONCLUSIONS: Synthetic CT images adequately depicted the cancellous and cortical bone distribution in the different lesion types, which shows its potential for MRI-HIFU treatment planning. KEY POINTS: • Synthetic computed tomography was able to depict bone distribution in metastatic lesions. • Synthetic computed tomography images intrinsically aligned with treatment MR images may have the potential to facilitate MR-HIFU treatment planning of bone metastases, by combining visualization of soft tissues and cancellous and cortical bone.


Bone Neoplasms , Magnetic Resonance Imaging , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/therapy , Feasibility Studies , Femur/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Pelvis , Radiotherapy Planning, Computer-Assisted/methods , Retrospective Studies , Tomography, X-Ray Computed/methods
10.
Clin Transl Radiat Oncol ; 27: 57-63, 2021 Mar.
Article En | MEDLINE | ID: mdl-33532631

BACKGROUND: Cancer induced bone pain (CIBP) strongly interferes with patient's quality of life. Currently, the standard of care includes external beam radiotherapy (EBRT), resulting in pain relief in approximately 60% of patients. Magnetic Resonance guided High Intensity Focused Ultrasound (MR-HIFU) is a promising treatment modality for CIBP. METHODS: A single arm, R-IDEAL stage I/IIa study was conducted. Patients presenting at the department of radiation oncology with symptomatic bone metastases in the appendicular skeleton, as well as in the sacrum and sternum were eligible for inclusion. All participants underwent EBRT, followed by MR-HIFU within 4 days. Safety and feasibility were assessed, and pain scores were monitored for 4 weeks after completing the combined treatment. RESULTS: Six patients were enrolled. Median age was 67 years, median lesion diameter was 56,5 mm. In all patients it was logistically possible to plan and perform the MR-HIFU treatment within 4 days after EBRT. All patients tolerated the combined procedure well. Pain response was reported by 5 out of 6 patients at 7 days after completion of the combined treatment, and stabilized on 60% at 4 weeks follow up. No treatment related serious adverse events occurred. CONCLUSION: This is the first study to combine EBRT with MR-HIFU. Our results show that combined EBRT and MR-HIFU in first-line treatment of CIBP is safe and feasible, and is well tolerated by patients. Superiority over standard EBRT, in terms of (time to) pain relief and quality of life need to be evaluated in comparative (randomized) study.

...